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Decentralizing the Growth Model

I. The Representative Agent Model

In this model (which we will sometimes refer to as the RA model), the representative
agent solves

max
Ct,Kt,It ,Lt; t=0,... ,∞

E

[ ∞∑
t=0

βtU(Ct, Lt)

]
(1)

subject to (Lagrange multipliers listed at the left)

µ: g(Ct, It, Kt−1, Lt, At) = 0 (2)

or

Ct + It = Atf(Kt−1, Lt) (3)

or

g(Ct, It) = Atf(Kt−1, Lt) (4)

or

Ct + Itg

(
It

Kt−1

)
= f(Kt−1, Lt) (5)

and

ν: Kt −Kt−1 = It − ψKt−1 . (6)

We also require Ct, Kt, Lt ≥ 0, all t, though commonly the forms of U and g (in the
general form (2)) are chosen so that these constraints are never binding. It may be
reasonable to require also that It ≥ 0. This constraint can be expected not to bind
under some reasonable choices of g in (4), but for the other forms of the technology
constraint it is likely to bind occasionally.

II. Decentralized Model: Consumer

Here the objective function is (1) as in the RA model, but the constraint has the
consumer purchasing consumption goods from wages and asset returns, with no direct
recognition of the technology constraint. The consumer’s constraint, in the version of
decentralization we will focus on, is

λ: Ct +Bt +QtSt = wtLt + (1 + rt−1)Bt−1 + (Qt + δt)St−1 + πt . (7)

Here π is profit distributions from the firm, which is owned by the consumer/worker.
There are two traded assets, a “share” and a bond. The share has dividends per share
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δ that may or may not be the same as π. We have set up the model so that each
individual is endowed with ownership of the typical firm (or a unit share in it). If the
traded share is a share in the typical firm, then the individual has the option of selling
off part of his endowment.

Note that other choices are possible here. We are giving the “firm” control of all
technological decisions, both employment and investment. Another setup that is used
sometimes is to have consumers purchasing capital goods directly and renting them to
the firm. Then it is consumers who have to compare costs of capital goods to their
expected future productivity. As we have this model set up, though, it is the firms
that make this kind of calculation.

We do not restrict bond and equity holdings to be positive—firms and consumers
may borrow. However, this means that we must put in place some kind of constraint
that prevents firms and consumers from borrowing arbitrarily large amounts, paying
off old debts always by borrowing more. The most natural way to motivate such a
no-Ponzi constraint is to appeal to the transversality condition of the lender. We will
therefore wait to write down the no-Ponzi constraints until after we have displayed
transversality conditions.

III. Decentralized Model: Firm

We suppose that the firm has a utility for its profit distributions, given by φ(πt),
with φ′ > 0 and φ′′ < 0, and that it maximizes a discounted sum of these utilities:

max
{Ct,Kt,Lt,Bt,St,It; t=0,... ,∞}

E
∞∑
t=1

βtφ(πt) . (8)

Its constraints are (2) (or one of its specialized forms), (6), and

ζ: πt = Ct − wtLt +Bt − (1 + rt−1)Bt−1 +QtSt − (Qt + δt)St−1 . (9)

Often (9) is solved for Ct, the result is substituted into (2), and the firm is treated as
having a single constraint in which C does not appear.

IV. Consumer FOC’s

The Euler equations are

∂C : DCUt = λt (10)

∂L: DLUt = −λtWt (11)

∂B: λt = β(1 + rt)Et[λt+1] (12)

∂S: Qtλt = βEt[λt+1(Qt+1 + δt+1)] (13)

Here as elsewhere in these notes, we are using the shorthand notation that if the typical
arguments for a function f at t are Xt, ft = f(Xt) Also we are using DCU as notation
for ∂U/∂C.



3

The transversality condition for the consumer1 is

lim sup
t→∞

βtE[−λtdWt] ≤ 0 , (14)

whereWt = Bt+QtSt is the consumer’s wealth and dWt represents any feasible (feasible
for the consumer, not necessarily for the whole economy) deviation of wealth from
its value in the candidate equilibrium. Observe that, because λ will be positive in
equilibrium, transversality will not be satisfied along any finite time path for W if
unlimited borrowing is allowed. With unlimited borrowing, it would be feasible to
make dW negative and let it grow more negative at a rate such that (31) would be
violated.

V. Firm FOC’s

The firm’s constraints are (5), (6), and (9). The Lagrange multiplier for each con-
straint is given at the left of the constraint as displayed above. We could have used any
of (2) through (4) instead of (5). We choose this version of the technology constraint
because it is probably the most common in the literature, and the main point of what
we do here does not depend on which version we choose. The Euler equations are then

∂π: ζt = φ′
t (15)

∂C : ζt = µt (16)

∂L: µtAtDLft = ζtWt (17)

∂I : µt ·
(
gt +

It

Kt−1
g′t

)
= νt (18)

∂K: νt − βEt[νt+1 · (1 − ψ)]

= βEt

[
µt+1

(
At+1DKft+1 +

I2
t+1

K2
t

g′t+1

)]
(19)

∂B: ζt = β(1 + rt)Et[ζt+1] (20)

∂S: ζtQt = βEt[ζt+1(Qt+1 + δt+1)] . (21)

It is helpful in interpreting the FOC’s with respect to K and I to rearrange them
a bit. Notice that the left-hand side of the technology constraint in (5) defines a
transformation curve between C and I , whose slope can be thought of as determining
the shadow price of capital goods in terms of consumption goods. The implicit shadow
price is easily seen to be just the term in parenthesis in (18), and it is convenient to
define special notation for this shadow price:

PK(t) = gt +
It

Kt−1

g′t . (22)

1We need to use the more general form of the TVC here because wealth is not constrained to be
positive.
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The functional form for g is usually chosen so that g(0) = 1, 0 < g′(0) < ∞, g′′t ≥ 0.2

That makes PK one when investment is zero. Now we can rewrite (19) (using (18) and
dividing through by µt) as

PK(t) = βEt

[
µt+1

µt

(
PK(t+ 1) · (1 − ψ) + At+1DKft+1 +

I2
t+1

K2
t

g′t+1

)]
(23)

This is an asset valuation equation much like (21) and (20). From these latter two
equations we see that the role of stochastic discount factor in the firm’s asset valuations
is being played by βζt+1/ζt, which because of (16) is the same as βµt+1/µt. So (23)
can be read as saying that the current price of a capital good is the discounted present
value of its market value next period, adjusted for depreciation, plus a dividend-like
term arising from the marginal product of capital, both directly in the conventional
production function f and indirectly through its ability to reduce capital adjustment
costs generated by g.

The firm’s transversality condition is

lim sup
t→∞

βtE[−µtdVt] ≤ 0 , (24)

where Vt = PK(t)Kt − Bt − QtSt is the value of the firm. Note that we are using
the convention that when B or S is positive, it represents borrowing by the firm,
asset accumulation by the consumer. (In deriving (24) we use the Euler equations to
eliminate all the Lagrange multipliers other than µ.)

One natural way to introduce no-Ponzi finance constraints is to treat the firm’s
transversality condition, with the time path of K seen by the consumer as exogenously
determined, as the consumer’s no-Ponzi constraint, while the consumer’s transversality
condition (14) is treated as the the firm no-Ponzi constraint. This is not as obvious as it
seems, because in this competitive model individual firms should be thought of as each
dealing with many consumers and vice versa. But it is true that for any one consumer
to take on debt at a rate of β−t would require at least one firm to buy bonds (i.e. lend)
at that rate. So setting the no-Ponzi conditions this way makes some sense. However
a constraint like this, because it affects only limiting behavior as t → ∞, could not in
practice be enforced. So requiring that for both firms and consumers wealth (or in a
growth model, the ratio of wealth to PKK, say) remain above some fixed (negative)
lower bound would be a more realistic specification.

VI. Matching centralized and decentralized model solutions

For the representative agent, the Euler equations with respect to C and L are

∂C : DCUt = µ∗
t (25)

∂L: DLUt = −µ∗
tAtDLft . (26)

2E.g., it is common to assume g(x) = 1 + x. Convexity of the set of attainable C, I pairs does not
actually require g′′ ≥ 0, though this condition does imply convexity.
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Though the constraints (5) and (6) occur in the same form in both problems, we do
have to recognize that their Lagrange multipliers, which we have called µ and ν, are
not necessarily the same for both models. We will preserve the original µ, ν for the
decentralized model and use, as in the equations just above, µ∗, ν∗ for the RA case.
The first order conditions with respect to K and I are then in exactly the form of the
corresponding equations (19) and (18) from the firm’s optimization problem, with ∗’d
Lagrange multipliers.

The representative agent’s transversality condition3 is

lim
t→∞

βtE[µ∗
tPK(t)Kt] = 0 . (27)

We want to check whether a solution to the RA problem (which in this one-agent
model is also the social planner’s solution) corresponds to an equilibrium of the decen-
tralized model. This amounts to determining whether the additional variables (S, B,
w, Q and r) and Lagrange multipliers (µ, ν, λ and ζ) that appear in the decentralized
model can be chosen in such a way that the constraints and FOC’s of the decentralized
model are satisfied.

From (25) and (10), we conclude that we will have to have λ = µ∗. Then from (11),
and (17), and (16) we have

DLUt = −λtWt = −λt
µt

ζt
AtDLft = −λtAtDLft . (28)

With the λ = µ∗ condition we have already deduced, this equation implies (17). So we
have verified that we can satisfy (10), (11), (16) and (17) by setting λ = µ∗ and ζ = µ.
Because we know that the C process must be that of the RA solution, we can solve for
r from (12), as

1 + rt = β−1 DCUt

Et[DCUt+1]
(29)

and for Qt from (13), solving forward to obtain

Qt = Et

[ ∞∑
t=0

βsΦ(t; t+ s)δt+s

]
, (30)

where we are assuming

βsEt[Φ(t; t+ s)Qt+s] →
s→∞

0 (31)

and using the notation

Φ(t; t+ s) =
λt+s

λt
=
DCUt+s

DCUt
. (32)

3Here we can use the simplified form of the condition because we assume µ∗ = φ′ and K are both
always positive.
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Since we are here just checking that we can find one decentralized solution that
supports the RA allocation, it need not worry us at this point that the solution for Q
in (30) might not be unique if (31) were violated.

The version of the capital valuation equation (23) for the RA problem discounts
real returns to capital at the rate βµ∗

t+1/µ
∗
t = βΦ(t; t + 1), under our λ = µ∗ condi-

tion. The version of that same equation with unstarred µ of course uses a potentially
different discount factor, βµt+1/µt = βζt+1/ζt = βΘ(t; t + 1), instead. A sufficient
condition for the decentralized version to hold, given that the RA version holds, is
that µt+1/µt = µ∗

t+1/µ
∗
t . In this case it would follow immediately that PK computed

from (23) for the representative agent matches that for the firm in the decentralized
model, and it would follow also that, since µ = ζ, the firm asset valuation equations
derived from (20) and (21) are implied by the corresponding consumer equations (12)
and (13). In this situation firms, consumers, and representative agent would all be
valuing uncertain future returns with the same stochastic discount factor. This is the
defining characteristic of a complete markets equilibrium. We have verified that all
first order conditions for the decentralized model would then be satisfied, and of course
the technological constraints (2) and (6) are satisfied in the RA case and therefore also
in any corresponding decentralized equilibrium.

All that remains to be verified is that the consumer’s budget constraint (7), which
occurs slightly rearranged as the firm’s budget constraint (9), and transversality and
no-Ponzi conditions for the firm and consumer can be satisfied in such a complete
markets equilibrium. But it turns out that these conditions do not generally hold
when we attempt to verify an equilibrium of the decentralized in which C , K, and
L match the solution of the RA model while only a small number of “macro-model”
assets (like bonds and equity) are traded.

VII. Why Bonds and equity alone are too few traded assets

We will first make the argument in a general form, then show how it applies to this
model. Suppose we have an equation for the evolution of wealth Xt of the form

Xt = (1 + ρt)Xt−1 − Yt , (33)

and we know that

Et−1[1 + ρt] = β−1 > 1 . (34)

Then if

βsEtXt+s →
s→∞

0 , (35)

we can write Xt as

Xt = Et

[ ∞∑
s=1

βsYt+s

]
. (36)
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Now we have two equations determining Xt, the forward solution (36) and the one-
period budget constraint (33). These may not be mutually consistent, in which case
at least one of the equations we started with—(33), (34), or (35)—must fail to hold.

To check whether the forward solution exists, we can form the innovation in Xt,
defined as X̃t = Xt − Et−1Xt, from both (36) and (33) and see if the expressions can
match. That is, we check

X̃t =

∞∑
s=1

βs[Et − Et−1]Yt+s = ρ̃tXt−1 − Ỹt , (37)

or, rearranging

ρ̃tXt = [Et − Et−1]
∞∑
t=0

βsYt+s . (38)

In words, the innovation in the returns on wealth must match the innovation in the
discounted present value of Y .

To apply this check to the current model, notice that we have from (15) and (10) that
equality of the stochastic discount factors used by firms, consumers, and representative
agents implies

DCUt+1

DCUt
=
φ′

t+1

φ′
t

. (39)

We have already assumed that φ′′ < 0. If we assume also that U is concave, (39) can
be solved as

πt = h(Ct, Lt, C0, L0, φ0) . (40)

This lets us rewrite the decentralized model’s budget constraint (7), multiplied through
by λt/λt−1, as

λtWt =
λt

λt−1

(
θt−1(1 + rt−1) + (1 − θt−1)

Qt + δt

Qt−1

)
Wt−1 − λt(Ct − ht − wtLt) , (41)

where θt = Bt/Wt is the fraction of wealth held as bonds. This equation has just the
structure we displayed above as (33), with

Xt = λtWt (42)

(1 + ρt) =
λt

λt−1

(
θt−1(1 + rt−1) + (1 − θt−1)

Qt + δt

Qt−1

)
(43)

and

Yt = λt(Ct − ht − wtLt) . (44)

With the definition given in (43) for 1+ρt, it is easy to verify that the consumer FOC’s
with respect to S and B, (12) and (13), imply the condition Et−1[1+ρt] = β−1 that we
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used in deriving (38). Thus the condition required for supporting the RA allocation
with a decentralized equilibrium is

Wt−1λt−1[Et − Et−1]

[
λt

λt−1

(
θt−1(1 + rt−1) + (1 − θt−1)

Qt + δt

Qt−1

)]

= [Et − Et−1]

[ ∞∑
t=0

βsλt+s(Ct+s − ht+s − wt+sLt+s)

]
. (45)

The right-hand side of this expression is entirely determined by the stochastic pro-
cesses of C , L and the marginal product of labor, which are pinned down by the RA
equilibrium. The left-hand side is affected by Ct, Lt, δt and the portfolio share θt−1.
If there is non-trivial randomness in the return on equity, there will generally be at
most one value of the portfolio share (possibly not between zero and one) that makes
the left-hand side and right-hand sides match. If the randomness at each date t is
concentrated on two points, so that each random variable can take on only two values,
“high” and “low”, then so long as the stock return (Qt + δt)/Qt−1 is random, there will
be a θt−1 that makes (45) hold. But with more general patterns of random variation
in the model, it would be a knife-edge special case for it to be possible to make the
equation hold. In other words, usually it will be true that if real allocations follow the
RA solution and stochastic discount factors match across firms and consumers, and if
only equity and bonds are traded, the budget constraint would generate an explosive
time path for consumer wealth.

On the other hand, if allowed to engineer the equity return arbitrarily, we can gen-
erally describe an equity asset that satisfies (45), even with Bt ≡ 0. Such an asset
would be engineered so that surprises in its rate of return exactly match surprises in
the discounted present value of the excess of consumption over income along the RA
solution path.

VIII. A Symmetric Two-Agent Model

Though decentralization into firms and individuals is central to most of macroeco-
nomics, the resulting model is complicated enough that it is worthwhile to look also
at a simpler model where these principles can perhaps be brought out more clearly.
The model can be interpreted as a rough approximation to a two-country model with
international capital flows in a limited menu of assets.

We have two agents, i = 1, 2, each of whom receives an endowment Yi(t) each period.
Yi(t) is i.i.d. across time t and across agents i. There is no possibility of storing the
endowment from one period to the next. There are two traded assets, a stock and a
bond. Agent i’s holdings of stock at t are Si(t) and of bonds Bi(t). Agent i’s objective
is to

max
C,S

E

[ ∞∑
t=0

βtU(Ci(t))

]
(46)
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with constraint

Ci(t) +Qi(t)Si(t) = Yi(t) + (Qt + δt)Si(t− 1) . (47)

The market-clearing condition is

S1(t) + S2(t) = 0 , (48)

so assets acquired by one agent are issued by the other—S is in zero net supply. Adding
the two budget constraints and using the market clearing condition gives us the social
resource constraint,

C1(t) + C2(t) = Y1(t) + Y2(t) . (49)

A social planner who put equal weight on the welfare of the two agents would solve

max
C1,C2

E

[ ∞∑
t=0

βt
(
U(C1(t)) + U(C2(t))

)]
(50)

subject to (49). The social planner’s problem has no dynamics, because there is no
real possibility of trading off consumption at different dates, so the solution is trivial.
The FOC’s imply

U ′(C1(t)) = U ′(C2(t)) , all t , (51)

which in turn implies (assuming U is differentiable and strictly concave)

C1(t) = C2(t) =
Y1(t) + Y2(t)

2
= Ȳt . (52)

The Euler equations for agent i in the decentralized model are

∂C : U ′(Ci(t)) = λi(t) (53)

∂S: Qtλi(t) = βEt[λi(t+ 1)(Qt+1 + δt+1)] . (54)

Transversality for agent i is

lim sup
t→∞

βtE[−λi(t)QtdSt] ≤ 0 . (55)

As usual we will assume that there is a no-Ponzi constraint bounding the rate of
decrease of QS and thereby the rate at which QtdSt can explode toward negative
infinity. This allows us to treat the lim sup in (55) as an ordinary lim and to replace
the inequality with an equality.

We can now ask whether the planner’s allocation, in which available resources are
simply split equally between the two agents each period, can be supported as a com-
petitive equilibrium with trading in the single asset S. The agents’ budget constraint
(47) can be rearranged and multiplied by λi(t) to be in the form of our abstract budget
constraint (33):

λi(t)QtSi(t) =
λi(t)(Qt + δt)

λi(t− 1)Qt−1
λi(t− 1)Qt−1Si(t− 1) − λi(t)(Ci(t)− Yi(t)) , (56)
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in which λQS plays the role of X, λi(t)(Qt + δt)/(λi(t)Qt−1) the role of (1 + ρt), and
λi(t)(Ci(t) − Yi(t)) the role of Yt. The Euler equations guarantee that the condition

Et−1[1 + ρt] = Et−1

[
λi(t)(Qt + δt)

λi(t− 1)Qt−1

]
= β−1 (57)

is satisfied. The condition for existence of an equilibrium satisfying transversality
and no-Ponzi constraints while implementing the planner’s allocation is then that the
innovation in

λi(t− 1)Qt−1Si(t− 1) · λi(t)(Qt + δt)

λi(t− 1)Qt−1

= Si(t− 1)λi(t)(Qt + δt) (58)

match that in
∞∑

s=0

βsλi(t+ 1)(Ci(t+ s) − Yi(t)) . (59)

Since Ci(t) = Ȳt = 1
2
(Y1(t)+Y2(t)) for all t, and since Yi(t) is i.i.d. across both t and i,

the expectation of (59) based on information at t− 1 is zero and its innovation is just

U ′(Ȳt) ·
(

1
2
(Yj(t) − Yi(t))

)
, (60)

where j 6= i.4 Thus to implement the equilibrium, we have to be sure that the unpre-
dictable component of the asset’s return moves precisely as (60).

Obviously if the asset is a bond, so that Q ≡ 1 and δt = rt−1, there is no surprise
element at all in the asset’s yield and there is therefore no possibility of implementing
the planner’s allocation with bond trading—except in the special case where there is
no uncertainty about the Y ’s, so they are constant.5

To see that it is possible to support the planner’s allocation with a single asset,
consider the case where δt = Y1(t) − Y2(t).

6 To find the return on this asset we need
first to determine how its price Qt behaves. Solving the S Euler equation (54) forward
gives us

Qtλt = Et

[ ∞∑
t=1

βsλi(t+ s)δt+s

]
. (61)

4To get this conclusion we use the fact that if Y1 and Y2 are two identically distributed, independent
random variables, E[f(Y1 + Y2) · (Y1 − Y2)] = 0, regardless of the form of f , because the product is
symmetrically distributed about zero by construction.

5If the Y ’s are non-constant, but move in perfectly predictable patterns, then it is possible to
implement the planner’s solution with bonds. This case does not fit the framework of these notes,
because we have assumed i.i.d. Y ’s, but will be taken up by George Hall in this week’s lectures.

6Since return on the asset is sometimes negative, this asset is like a partner’s share of a firm, where
losses of the firm become negative returns to the share owner, rather than like equity shares in a
limited liability company.
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Since in the planner’s equilibrium λi(t) = U ′(Ȳt), and the Y ’s are i.i.d., the right-hand
side of this equation is just a constant, so

QtU
′(Ȳt) =

E
[(
Y1(t) − Y2(t)

)
U ′(Ȳt)

]
β−1 − 1

= 0 . (62)

In other words, so long as the model does not allow satiation (U ′ > 0), this asset trades
at a constant price of zero.

With the asset free, the budget constraint (47) simplifies to

Ci(t) = Yi(t) + Si(t− 1) · (Y1(t) − Y2(t)) . (63)

To implement the RA allocation, then, agent one must be choosing S1(t) ≡ −1
2
. That

this does indeed correspond to optimal behavior for both agents is guaranteed by our
having determined Q from the agents’ FOC’s.

What if the single asset paid a dividend equal, say, to δt = Y1(t)? The dividend
yield of this asset of course has no chance of matching the innovation defined in (59)
under the RA allocation, but Q will generate random variation in the yield through
capital gains. One might hope that this would allow the RA allocation to be achieved.
Applying (61) gives us

QtU
′(Ȳt) =

E[U ′(Ȳt)Y1(t)]

β−1 − 1
. (64)

The right-hand side of this equation is a constant, so Qt simply moves in inverse
proportion to U ′(Ȳt). The condition for existence, matching the innovation in (58) to
(60), then reduces to the requirement that the innovations in S1(t − 1)U ′

tY1(t) and in
U ′

t ·
(
Y1(t) − Y2(t)

)
match. Since taking the innovation is a linear operation, this can

occur only if U ′
t ·

(
(1 − S1(t− 1))Y1(t) − Y2(t)

)
is non-stochastic, which can’t be true,

no matter what S1(t− 1) is, if the Yi(t)’s are non-deterministic and i.i.d.

IX. Incomplete Markets Solutions for the Two-Country Model

So far we have only checked whether a competitive decentralized equilibrium can
support the planner’s allocation. If not, what does the equilibrium look like?

In the case where only a bond trades, it may easily be that the only equilibrium
is one with no trade in assets at all. Suppose U is unbounded above, U(0) = 0, C
is constrained to be non-negative, and the distribution of Yi(t) is such that for every
ε > 0, P [Yi(t) < ε] > 0. We know that Ci(t) < Y1(t) + Y2(t), all t, so that in any
equilibrium

Et

[ ∞∑
t=0

βtU(Ci(t))

]
≤ U(Y1(t) + Y2(t)) +

E[Y1(t) + Y2(t)]

β−1 − 1
. (65)

Thus if everBi(t) grows so large that U(Bi(t)) exceeds the right-hand side of (65), agent
i would see the possibility, by selling his holdings of B and consuming the proceeds, of
increasing his utility beyond any feasible level. Therefore no equilibrium can produce
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a non-zero probability of B exceeding this level. But as soon as either agent has a
negative B (i.e. has done some borrowing), the probability of B becoming arbitrarily
large has become non-zero. This is true because there is in each period a non-zero
probability that Yi is less than, say, half the interest due on i’s debt. If this happens
over and over again, for long enough, B must grow arbitrarily large. Of course this
may be extremely unlikely, but so long as Yi(t) has a positive probability each period
of being this small, the probability of it staying this small long enough to push B above
the critical level is non-zero. Thus neither agent can issue a bond that he can promise
with probability one to service. There is always some chance that after the first debt
issue, debt will be forced to grow to a point where lenders will not provide further
loans and interest cannot be paid. The model is therefore one in which the borrowing
constraint faced by each agent is always binding.

Nonetheless, it is not uncommon to linearize a model like this one around its steady
state, ignoring borrowing constraints, and solve it for the bonds-only case. Such a
linearized solution will be different from the linearization of the planner’s solution, but
even more different from the linearization of the true bonds-only equilibrium in which
no bonds are in fact issued. This discrepancy illustrates a general point: linearizations
of models like these that ignore borrowing constraints are good approximations only
over periods in which the borrowing constraints are not binding. The interpretation of
a linearized bonds-only equilibrium must be that the bonds are not truly unconditional
promises to repay without uncertainty, but that they include a bankruptcy provision
that is invoked only in circumstances that are unlikely and remote in time from the
present. Then the linearized bonds-only equilibrium is likely to be a good approxi-
mation over periods during which invocation of the bankruptcy provision remains a
remote possibility.

X. Exercises

1. Consider a consumer whose budget constraint and objective function are (47)
and (46) as in the “two-country” model of these notes, with i = 1. Suppose
the traded asset in the economy has dividend δt = Y2(t), with Y2 i.i.d., with
the same distribution as Y1, this consumer’s endowment, but with the Y1 and Y2

processes independent. Suppose this consumer has U(C1(t)) = log(C1(t)) and
chooses S1(t) = 1 for all t. Find the implied price process Q(t) for the asset,
as a function of constants (which will depend on the expectation of one or more
functions of Y1 and Y2) and of Y1 and Y2. Note that part of the task is to rid the
formula of the endogenous variable C1.

2. Linearize the two-country model about its deterministic steady state with S = 0.
(The steady state is not unique. There is one for each value of S, because S
drifts in equilibrium.) Assume the utility function is log(C). Treat Y1, Y2 and δ
as distinct exogenous disturbances. Assume Y1, Y2 , and δ each have a mean of 1
and that β = .9 when computing the deterministic steady state. Solve the system
to show how the Ci(t)’s and Qt are determined from past data and current shocks
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to the Y ’s and δ. You will want to suppress roots of β−1 are larger, but allow
roots equal to one in absolute value.

Compare your results with the linearized version of the planner’s solution (which
here is trivial—Ci(t) ≡ Ȳt is both the exact and the linearized solution of the
planner’s problem.)

Note that it is probably best to use the social resource constraint (49) and one
of the two budget constraints (47), which allows dropping the market clearing
constraint S1 + S2 = 0 and using just one S variable. You should, after incorpo-
rating Euler equations for the two agents and eliminating Lagrange multipliers,
end up with four equations in the four endogenous variables C1, C2, Q and S. The
resulting linear equation system can be handled analytically, because its Γ0 ma-
trix can be arranged into a block triangular system with two two-by-two blocks.
However, it is probably not worth the effort to solve it analytically, unless perhaps
you are using Mathematica, which can do computer algebra. Convert the matri-
ces to numbers and do the eigenvector and eigenvalue calculations with Gauss or
Matlab instead.


